경찰공무원(순경) 수학(2021. 8. 21.) 시험일자 : 2021년 8월 21일
1. 세 실수 가 x, ,y, z가 x+y+z=4, xy+yz+zx=-14, xyz=-12를 만족시킬 때, (x+y)(y+z)(z+x)의 값은?
- ① -40
- ② -44
- ③ -48
- ④ -52
등록된 댓글이 없습니다.
2. 이차방정식 x2-5x+5=0의 두 근을 α, β라고 할 때, (5α2-α3-β)(5β2-β3-α)의 값은?
- ① 40
- ② 45
- ③ 50
- ④ 55
등록된 댓글이 없습니다.
3. 다항식 (2x+1)6을 4x2-1로 나누었을 때의 나머지를 R(x)라고 할 때, R(-1)의 값은?
- ① -32
- ② -16
- ③ 16
- ④ 32
등록된 댓글이 없습니다.
4. 실수 x, y가 x2+y2=25를 만족시킬 때, y2+4x의 최댓값과 최솟값의 합은?
- ① 3
- ② 6
- ③ 9
- ④ 12
등록된 댓글이 없습니다.
5. 두 점 A(-3, 1), B(2, 4) 와 직선 y=x 위의 점 P에 대하여 의 최솟값은? (단, 는 선분 AB의 길이이다.)
- ① √2
- ② 5√2
- ③ 9√2
- ④ 13√2
등록된 댓글이 없습니다.
6. 이차함수 f(x)=-x2+2x+7에 대하여 방정식 (f(x)-a){f(x)-(a+2)}=0 이 서로 다른 세 실근을 가질 때, 상수 a의 값은?
- ① 2
- ② 4
- ③ 6
- ④ 8
등록된 댓글이 없습니다.
7. 원점에서 원 x2+(y-a)2=9에 그은 두 접선이 수직일 때, 상수 a의 값은? (단, a>3 이다.)
- ① 3√2
- ② 4√2
- ③ 5√2
- ④ 6√2
등록된 댓글이 없습니다.
8. x에 대한 항등식 에 대하여, 의 값은? (단, 1≤n≤16 인 자연수 n에 대하여 an은 상수이다.)
- ① 119
- ② 122
- ③ 125
- ④ 128
등록된 댓글이 없습니다.
9. 유리함수 의 그래프가 두 직선 x=7, y=2와 만나지 않을 때, a+b의 값은? (단, a, b는 ab≠-1인 상수이다.)
- ① 3
- ② 5
- ③ 7
- ④ 9
등록된 댓글이 없습니다.
10. 직선 y=mx+n이 곡선 y=x2+2ax+a2+2a에 실수 a의 값에 관계없이 항상 접할 때, 점(8,3) 과 직선 y=mx+n 사이의 거리는? (단, m, n은 상수이다.)
- ① √5
- ② 2√5
- ③ 3√5
- ④ 4√5
등록된 댓글이 없습니다.
11. 일 때, a/b의 값은? (단, a, b는 상수이고 b≠0 이다.)
- ① 1/8
- ② 1/4
- ③ 4
- ④ 8
등록된 댓글이 없습니다.
12. 함수 가 실수 전체의 집합에서 연속일 때, 상수 a의 값은?
- ① 1
- ② 2
- ③ 3
- ④ 4
등록된 댓글이 없습니다.
13. 다항함수 f(x)에 대하여 일 때, 곡선 y=f(x) 위의 점(3, f(3)) 에서의 접선의 방정식은?
- ① y = 12x + 26
- ② y = 12x - 34
- ③ y = 4x - 10
- ④ y = 4x + 10
등록된 댓글이 없습니다.
14. 원점을 출발하여 수직선 위를 움직이는 두 점 P,Q의 시각 t에서의 위치 x1, x2가 각각 x1=2t3-6t2, x2=3t2+24t 이다. 두 점 사이의 거리의 최댓값은? (단, 0≤t≤5 이다.)
- ① 68
- ② 95
- ③ 112
- ④ 128
등록된 댓글이 없습니다.
15. 다항함수 f(x)가 임의의 두 실수 x, y에 대하여, f(x+y)=f(x)+f(y)+2xy-1 을 만족시킨다. 일 때, f′(2)의 값은?
- ① -3
- ② -1
- ③ 1
- ④ 3
등록된 댓글이 없습니다.
16. 모든 실수 x에 대하여 다항함수 f(x)는 을 만족시킨다. 함수 f(x)가 x=α, β(α<β)에서 극값을 갖고 f(0)=1일 때, 의 값은?
- ① -12
- ② -6
- ③ 0
- ④ 6
등록된 댓글이 없습니다.
17. 함수 에 대하여 의 값은?
- ① 8
- ② 26/3
- ③ 28/3
- ④ 10
등록된 댓글이 없습니다.
18. 집합 U={1, 2, 3, 4, 5, 6}에 대하여, 다음 세 조건을 만족시키는 순서쌍 (A, B)의 개수는?
- ① 31
- ② 32
- ③ 63
- ④ 64
등록된 댓글이 없습니다.
19. 한 개의 주사위를 두 번 던진다. 5의 눈이 한 번도 나오지 않을 때, 나온 두 눈의 수의 합이 3의 배수일 확률은?
- ① 2/25
- ② 4/25
- ③ 8/25
- ④ 16/25
등록된 댓글이 없습니다.
20. 한 개의 주사위를 750번 던질 때, 짝수의 눈이 나오는 횟수를 확률변수 X라 하자. X의 평균을 a, 분산을 b라 할 때, a+2b의 값은? (단, a, b는 상수이다.)
- ① 375
- ② 500
- ③ 650
- ④ 750
등록된 댓글이 없습니다.